Search results for "Packing dimension"
showing 10 items of 16 documents
Separation properties of (n, m)-IFS attractors
2017
Abstract The separation properties of self similar sets are discussed in this article. An open set condition for the (n, m)- iterated function system is introduced and the concepts of self similarity, similarity dimension and Hausdorff dimension of the attractor generated by an (n, m) - iterated function system are studied. It is proved that the similarity dimension and the Hausdorff dimension of the attractor of an (n, m) - iterated function system are equal under this open set condition. Further a necessary and sufficient condition for a set to satisfy the open set condition is established.
Hausdorff measures and dimension
1995
Existence of doubling measures via generalised nested cubes
2012
Working on doubling metric spaces, we construct generalised dyadic cubes adapting ultrametric structure. If the space is complete, then the existence of such cubes and the mass distribution principle lead into a simple proof for the existence of doubling measures. As an application, we show that for each $\epsilon>0$ there is a doubling measure having full measure on a set of packing dimension at most $\epsilon$.
Visible parts and dimensions
2003
We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…
One-dimensional families of projections
2008
Let m and n be integers with 0 < m < n. We consider the question of how much the Hausdorff dimension of a measure may decrease under typical orthogonal projections from onto m-planes provided that the dimension of the parameter space is one. We verify the best possible lower bound for the dimension drop and illustrate the sharpness of our results by examples. The question stems naturally from the study of measures which are invariant under the geodesic flow.
The packing dimension of projections and sections of measures
1996
AbstractWe show that for a probability measure μ on ℝnfor almost all m–dimensional subspaces V, provided dimH μ≤m. Here projv denotes orthogonal projection onto V, and dimH and dimp denote the Hausdorff and packing dimension of a measure. In the case dimH μ > m we show that at μ-almost all points x the slices of μ by almost all (n − m)-planes Vx through x satisfyWe give examples to show that these inequalities are sharp.
Local dimensions of sliced measures and stability of packing dimensions of sections of sets
2004
Abstract Let m and n be integers with 0 R n to certain properties of plane sections of μ. This leads us to prove, among other things, that the lower local dimension of (n−m)-plane sections of μ is typically constant provided that the Hausdorff dimension of μ is greater than m. The analogous result holds for the upper local dimension if μ has finite t-energy for some t>m. We also give a sufficient condition for stability of packing dimensions of section of sets.
Local dimensions of measures on infinitely generated self-affine sets
2014
We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space. We also give an estimate, that holds for all translation vectors, with only assuming the affine maps to be contractive.
Hausdorff dimension from the minimal spanning tree
1993
A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.
Porous measures on $\mathbb {R}^{n}$: Local structure and dimensional properties
2001
We study dimensional properties of porous measures on R n . As a corollary of a theorem describing the local structure of nearly uniformly porous measures we prove that the packing dimension of any Radon measure on R n has an upper bound depending on porosity. This upper bound tends to n - 1 as porosity tends to its maximum value.